26,773 research outputs found

    Physiotherapy students\u27 perceptions and experiences of clinical prediction rules

    Get PDF
    Objectives: Clinical reasoning can be difficult to teach to pre-professional physiotherapy students due to their lack of clinical experience. It may be that tools such as clinical prediction rules (CPRs) could aid the process, but there has been little investigation into their use in physiotherapy clinical education. This study aimed to determine the perceptions and experiences of physiotherapy students regarding CPRs, and whether they are learning about CPRs on clinical placement. Design: Cross-sectional survey using a paper-based questionnaire. Participants: Final year pre-professional physiotherapy students (n=371, response rate 77%) from five universities across five states of Australia. Results: Sixty percent of respondents had not heard of CPRs, and a further 19% had not clinically used CPRs. Only 21% reported using CPRs, and of these nearly three-quarters were rarely, if ever, learning about CPRs in the clinical setting. However most of those who used CPRs (78%) believed CPRs assisted in the development of clinical reasoning skills and none (0%) was opposed to the teaching of CPRs to students. The CPRs most commonly recognised and used by students were those for determining the need for an X-ray following injuries to the ankle and foot (67%), and for identifying deep venous thrombosis (63%). Conclusions: The large majority of students in this sample knew little, if anything, about CPRs and few had learned about, experienced or practiced them on clinical placement. However, students who were aware of CPRs found them helpful for their clinical reasoning and were in favour of learning more about them

    Well-Posedness And Accuracy Of The Ensemble Kalman Filter In Discrete And Continuous Time

    Get PDF
    The ensemble Kalman filter (EnKF) is a method for combining a dynamical model with data in a sequential fashion. Despite its widespread use, there has been little analysis of its theoretical properties. Many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The aim of this paper is to initiate the development of a systematic analysis of the EnKF, in particular to do so in the small ensemble size limit. The perspective is to view the method as a state estimator, and not as an algorithm which approximates the true filtering distribution. The perturbed observation version of the algorithm is studied, without and with variance inflation. Without variance inflation well-posedness of the filter is established; with variance inflation accuracy of the filter, with resepct to the true signal underlying the data, is established. The algorithm is considered in discrete time, and also for a continuous time limit arising when observations are frequent and subject to large noise. The underlying dynamical model, and assumptions about it, is sufficiently general to include the Lorenz '63 and '96 models, together with the incompressible Navier-Stokes equation on a two-dimensional torus. The analysis is limited to the case of complete observation of the signal with additive white noise. Numerical results are presented for the Navier-Stokes equation on a two-dimensional torus for both complete and partial observations of the signal with additive white noise

    Probing the mechanical properties of graphene using a corrugated elastic substrate

    Full text link
    The exceptional mechanical properties of graphene have made it attractive for nano-mechanical devices and functional composite materials. Two key aspects of graphene's mechanical behavior are its elastic and adhesive properties. These are generally determined in separate experiments, and it is moreover typically difficult to extract parameters for adhesion. In addition, the mechanical interplay between graphene and other elastic materials has not been well studied. Here, we demonstrate a technique for studying both the elastic and adhesive properties of few-layer graphene (FLG) by placing it on deformable, micro-corrugated substrates. By measuring deformations of the composite graphene-substrate structures, and developing a related linear elasticity theory, we are able to extract information about graphene's bending rigidity, adhesion, critical stress for interlayer sliding, and sample-dependent tension. The results are relevant to graphene-based mechanical and electronic devices, and to the use of graphene in composite, flexible, and strain-engineered materials.Comment: 5 pages, 4 figure

    Correlation inequalities for noninteracting Bose gases

    Full text link
    For a noninteracting Bose gas with a fixed one-body Hamiltonian H^0 independent of the number of particles we derive the inequalities _N < _{N+1}, _N _N _N for i\neq j, \partial _N/\partial \beta >0 and ^+_N _N. Here N_i is the occupation number of the ith eigenstate of H^0, \beta is the inverse temperature and the superscript + refers to adding an extra level to those of H^0. The results follow from the convexity of the N-particle free energy as a function of N.Comment: a further inequality adde

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, appendix A

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed were: (1) Capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) Capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) Postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) Investigation and simulation of various control methods including manual force/torque and active compliance control; (5) Evaluation and implementation of three obstacle avoidance methods; (6) Video simulation and edge detection; and (7) Software simulation validation. This appendix is the user's guide and includes examples of program runs and outputs as well as instructions for program use

    A Prototype Sourceless Kinematic-Feedback Based Video Game for Movement Based Exercise

    Get PDF

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation

    Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite

    Full text link
    Electric field effect devices based on mesoscopic graphite are fabricated for galvanomagnetic measurements. Strong modulation of magneto-resistance and Hall resistance as a function of gate voltage is observed as sample thickness approaches the screening length. Electric field dependent Landau level formation is detected from Shubnikov de Haas oscillations in magneto-resistance. The effective mass of electron and hole carriers has been measured from the temperature dependant behavior of these oscillations.Comment: 4 pages, 4 figures included, submitted to Phys. Rev. Let

    Detection limits of organic compounds achievable with intense, short-pulse lasers

    Get PDF
    Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed
    • …
    corecore